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? ERRATA
4
p. I-1 : Replace
... only when a rectangular taper is appliecd to the autocorrelation
function. Again, in computing conventional spectral estimates,
only a rectangular taper preserves the autocorrelation function in-
‘ tact,
| with
;x «.. only when the available autocorrelation function iag values are
\ Fourier transformed in their original uamodified form. To reduce
the spectral window effects associated with this nrocedure, sore
conventional spectral analysis methods taper the autocorrelation
function.
2 2
: p. llI-2: Replace |p?(a::;)* q:_Nl with 'p? + (a::i)*q:iN
r p. 111-4: Replace (qN+1. An42? ...,qt) with (qN+l' Uns2° ...,q,r)
M M
p- E-5: Replace Z kM.l with Z km-l
m=l - 1

L

' 1
p. E-5 : Replace _ IJ[ with ml\:l ;! 1
‘ 2, 2, |
! m=l m=1
i
i (o) '
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ABSTRACT

This tutorial paper describes the maximum entropy spectrum and the
Burg technique for computing the prediction error power and prediction er -
ror filter coefficients in the associated spectral estimation formula. The
maximum eatropy spectrum is identical to the autoregressive spectral esti-
mator. Also included in this paper is a discussion of the K-line spectrum,
which is the wavenumber analcgue of the frequency-domain rmmaximum entropy
spectrum, and the Burg technique modifications necessary iur its implemen-
tation.

The purpose of this paper is to providc¢ a complete and self-contained
account of the main features of the maximum entropy spectrum, Since many
of the relevaiit mathematical deriv itions are not found in the formal pub.ished
literature, they are incorporated in this paper. Supporting material and var-

ious sidelights of the maximum entropy spectrum appear in the appendices.
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SECTION I
INTRODUCTION

: : The maximum entropy spectrum is an cutgrowth of the deconvolution
filtering technique long used in oil-exploration data processing. A deconvolu-
| . tion filter is a whitening filter whose purpose is to sharpen the images of a
seismic profile, John Parker Burg in the sarly 1960's noticed that high-
resolution power density spectra could be computed using the reciprocal of the
squared amplitude response of the deconvolution filter. This form of spectral
estimator was known as the Markov spectrum and is identical to the autore-
gressive spectral estimator independently developed and described in the sta-
{ . tistical literature. Later Burg recognized that the Markov spectrum is the

maximum entropy spectrum (Burg, 1967) of all possible power spectra agree-
{ ' ing with the measured autocorrelation function values. In addition, Burg de-

veloped a method (Burg, 1968) for directly calculating the coefficients of the

deconvolution filter (or prediction error filter) used in the spectral estimate. ]
This method produces more accurate spectra and minimizes the problem of

end effects,

Most of the problems encountered in conventional spectral estimation

h il o

are remedied by the maximum entropy spectrum and the Burg technique for
czlculating the prediction error filter coefficients. For example, the inverse

Fourier transform of {he maximum entropy spectrum agrees with the measured

autocorrelation function values, whereas this is true in conventional spectral
estimation only when a rectangular taper is aprlied to the autocorrelation func-
tion. Again, in computing conventional spectral estimates, only a rectangular

taper preserves the autocorrelation functinn intact. The maximum entropy

o G r oo & e
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spectrum, on the other hand, always uses tl.c autocorrelation function in un-
modified form, The Burg technique, furthermore, guarantees that the power
spectrum is always positive, that the prediction error filter is minimum phase,
and that the autocorrelation matrix corresponding to the prediction error filter
, coefficients is always non-negative definite. With conventional spectral esti-

F mates, a zero extension of the autocorrelation functioa is implicitly assumed.

i In some cases, this assumption is unreasonable and produces negative power

[ in the spectral estimate. In all cases, the truncation of the autocorrelation
function produces lower resolution than the maximum entropy spectrum, which
L achieves its increased resolution through an optimal extension of the autocor-

relation function.

The purpose of this survey paper is to discuss the important features

3 of the maximum entropy spectrum and the Burg technique and to present the

l relevant derivations, which are often not readily available. The exposition re-
lies heavily on Burg's first two published papers. Section II deals with the
maximum entropy spectrum, Section III with the Burg technique, and Section

IV with the K-line spectrum, which is the wavenumber analogue of the maxi-

mum entropy spectrum. The appendices contain supporting material obtained

from a number of sources. which are referenced for the reader's benefit.

"
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.- SECTION I1
THE MAXIMUM ENTROPY SPECTRUM

Given an infinite-length discrete time series (possibly complex) with

elements (... . x_T, xl-T' ces s X 4 Xot Xpa cees xT-l » Xy ves) Sam-
L .. pled at the time interval At, the associated NXN autocorrelation matrix is
:: -  d
¥ T * v* *
; *t |:‘t 41 xt-t»N-lil
- Ry = X4l

*e+N-1
E r(O) r(l) svcoesssncene l'(N.l)T
L: = r*(l) r(o) 'oooco.aooo.to r(N—Z)

* . *. ...‘..o *
Ir (N-l) r (N-Z)o.ou-oc-.or(o)

where the vinculum denotes averaging over time, the asterisk denotes com-

plex conjugate, and the elements

T
. _ lim | *x <:< i
r(j) = T—w® 2T71 E xtxt+j (I-N<j £N-1) ,
t=-T

of the matrix are the autocorrelaticn function values at the lags jAt. The

auiocorrelation matrix is Hermitian (RN = Rg » where the superscript H

denotes conjugate transpose), Toplitz (having icentical elements along each
diagonal), and non-negative dcfinite (VHRNV 20 for all non-zero N-com-

ponent column vectors V).

o et o
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Of all possible power spectra P(f) whose inverse Fourier trans- .-

forms

w/2

:: S P(f) exwajAt df )
-w/2

agree with the available autocorrelation function values r(j) from j = 1-Mto
| j = N-1, the maximum entropy spectrum (Burg, 1967) is the spectrum maxi-

mizing the integral

w/2
] log P(f) df ,
[ -W/2

which is properiional to the entropy of a Gaussian tand-limited time series
with power spectrum P(f) and bandwidth W = 1/At corresponding to the
sampling iaterval At, Entropy maximization subject tc the specified con-

straints on the power spectrum occurs when

w/2 N-1 w/2
‘ log Pf) df - z b s Pia ST g )
W2 j=1-N -W/2

reaches its maximum value through the proper choice of the power spectrum

P{f). The quantities bj (i=1-N, ..., -1,0,1, ..., N-1) are complex-
valued Lagrangian multipliers. To ratisiy the extremal condition, the partial

derivative of the integrand with respect to the power spectrum must be zero:

N-1
0 = -—"‘) [bs P(f) - E b, p(f) o2 THA

e e i ik




t
i
ds

-1
1 i2 ¥ £j At
= PO Z bye :

j=1-N

Thus the form of the maximum entropy spectrum is

1 1
P(o = N-1 T N-1 ’
bye iz gfjae E bjz-J
j=1-N j=1-N
where 2 = e”12 ¥t . To make the power spectrum real-valued and to

%
satisfy the conditions r(-j) = r ¢}, the Lagrangian multiplier b-j must be
the complex conjugate b; of the multiplier 'bj whose subscript has the oppo-

site sign.

The equation

1
=)
bz -
E 3 0= 0

j=1-N

has 2(N-1) roots. 1If z is a root, then (z").l is also a root: if

* N-1 * N-2 * -1
b e s e
N-1 ® + bN~2 z + +b1 z + b° + blz
-(N-2) -(N-1) _
+"'+bN-Zz +bN_lz =0,
-3
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then -(N-1) -(N-2) -1
5 [ 1 + b L + + b L +b
N-1{F n-2{ % b))
5 +b L ' + +b’°= (L)N-z
‘ 1 z*) N-2 z
; N-1
[ b (L) 0
N-1 z*)

Thus the number of roots for which | 45| is equal to the number of roots for
which |z|<{. If no roots lie on the unit circle, there are N-1 roots outside
3 the unit circle and N-1 roots inside the unit circle. The denominator of the

maximum entropy spectrum can then be written

l'—1~1Laz-1+a z-2+ +a z°(N'1) l1+a_ z
PN[ 2 3 TN

vath . ias N ’
332 P N

where PN is real. All of the roots within the unit circle are incorporated

in the factor at the lefi. Thus the maximum entropy spectrum is equal to

P 1 \ 3

VHAAHV

£

where the N-compenent column vectors V and A are, respectively,




i — - -
: b rl 7 1 7 1
'— V=\|z2 = e-121rfAt and A = a,
: - IN-1 ~iZTE(N-1)At :
: A © a
. L 34 L_ - . - b N—' *

i—

i The constraints embodied in the matrix equation

i

5 .'

T /2 w/2

b P H

t H N vV df = R
% j P(f) VV df = = I T N
E 2w/ lwiz VAV

y

: . —I'(O) (1) seeensscnee r(N-m

[}

r*(l) r(O)::'occooo.o r(?i-Z)

. e

(X
[ XX ]

*

(N=2)eeetes £(0)

r*N-1) r

determine PN and the components az, a3. ooy aN of the column vector A,

Multiplication on the right by the column vector A yields

o Wiz |
PNJ v(via) |

N df = R_A
Wilwiz viaatv "

or

P
N v -i2wz df R
i217§ T dz = RNA (dz = W )




where the contour-integral path runs counterclockwise along the unit circle,
Revertal of the clockwise path z = e -izwidt corresponding to increasing
frequer cy eliminates the minus sign in the expression for dz.} The j-th

comfonent of %A is

Since the factor V A contains all of the rocts within the unit circle, the
other factor AHV is never equal to zero within the unit circle. For all com-
ponents j from 2 to N, the power of z is non-negative and the integrand
contains no poles within the unit circle. For j = 1, however, there ig a

siinple pole at z = 0 whose residue is

‘ lim r 1 o
] z-0 ° 1 *'+ *x 2 * N- -t
i Lz(+azz a; z 4 ... +ay 2

Canchy's residue theorem implies, therefore, that the first component of

RNA is PN and that the remaining components from the second through the -

N-th are zero. Thus the maximum entropy spectrum is

P_/W P_ At

__N N4 |

PO =5 ° N-1 ' f*

V AA'V , . 2 )

i2wfjaAt i

1+ a. c i

j+1 :

j: 1 1

R

where PN and ay 8y ..., a3 are solutions of the matrix equation ;
Im-6




=

Y
’ -
B - o= -
’ l r(O) r(l) ssssccne r(N—l) 1
f *
’ r (l) !'(0} sseseene x‘(N-Z) az
1 : .3 ||
d .l - :
: r (N-1) 1 (N-2)eeao#{?) ay .
T _ JLn
% -
Rearrangement of the bottom N-1 rows produces
E, -
- . - M e
’; r(o) r(l)oo.ooooo r(N-Z) -az r (1)
" T * *
S r (1) r(0)seesecer T(N-3)| | -a, [ [T (2)
E : P, :
E - * M *: ."‘. . i * o
: . r (N-2) r (N-=3)eeeer(0) L-aN r (N-l‘)h
.. or
.- - . o ST —
. xt-l xt-l xt-‘:oooo.o.oo xt_(N-l) -az xt-l
*
| x * 1
t-2 B3t -2 |x,
H ¢ . t
: + : :
3 *t-(N-1) o x*
' ‘ >y [y

the design equation for an optimum (N-1)-point-long forward prediction filter
with weights (-a.z, ST VIR -aN), as shcwn in Figure JI-1(a). Taking the

complex conjugate yields

kit
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S TS s m e e weae a s

flal 4

~— U -—
r(O) r*(l) esesncvese ;*(N-Z) -a; r(l)
L 3 *
r(l) :(?) .-oco'.cqoo- r }N-S) -a3 = r(Z)
£(N-2) £(N-3)eesessen £(0) -;N r(N-1)

or

- « — o~ *_] :* —
X -
J‘t«l» 1 t+1 t+ 2ececoccce xt+ N-IJ ElZ t+1
* % *
*t4 2 23 =2 P
* ‘x *
X a X
t+ N- N t+ N-1
_ h | N] N

the design equation for an optimum {N-1)-point-long backward prediction

* %
filter with weights (-aN SEEEITIRC Y

If the prediction filter output is subtracted from the actual valve Xy the

-a -a; ), as shown in FigureII-1(b).
result is the prediction error, which can be produced from a filter with
unity weight at zero lag and the negative of the prediction filter weights at
their respective 1ags. Figures II-1(c)and Ii-1(d) illustrate the forward and
backward prediction error filters. The term PN in the maximum entropy
svectrum formula is the mean square error of the prediction filter and

the power of the prediction error filter output:

* *— B a0 ]
1 azoooooooaN r(O) r(l).ooooo.ooooo r(N-l) 1

| %
r:(l) r(o’::-....oo--c r(F-Z)

™~

r (N-1)1 (N-2)eseere- r(0)

b — e

E XTI YY)
*...'...
&
) ressssers N

Z

O ¢escosen

e T RN LW N

Cddad s




L Lt ][ * % . * : ]
2 Anj 1 % t T+l *t+ N-1
= X4 1 2
. x : a
_ t+ N- | }j_’
i
{ N-1 2
13 _ * _ ;
= 1% (~aj+ 1 t+j = PPy
3=1
E
{ 1 * o I X x -1!
; 27 AN % t Tl T X Ncgl
3 *
= xt-l aZ

—

A XX XX Y]
(A XXX XY

*

e
Lz

R

N-1 2

x ( ) x = *
= TS L T,
j=1

Inverse Fourier transformation of the maximum entropy spectrum

produces autocorrelation function estimates at lags greater than N-1. Addi-

tion of the element zN = e -iZwiNAt to the vector V permits the (N+1) X

(N+1) autocorrelation matrix to be determined:

|
!
h
:
|
|
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r(0) r(1) sesesssceer(N-1) | r(N) |
]

r(1)  r(0)secscsernr(N-2) | r(N-1)|

: : v

Rys14 3 RS : :

* * ’... . L] b

r (N-1) r (N-2)eseeeer(C) Vo)
I T ARkl

Ll: (N) r (N-1)sceee r (1) : r(0)

Multiplication cn the right by the extended prediction error filter column
vector and transformation to the z-plane yields

PN £E¥} dz = RN+1 EAJ ’

iZI’J Hy 0

where the contour path runs counterclockwise along the urit circle. The
(N+1)-st component is zero since all pnles of the integrand zN'll(AH\') lie
outside the unit circle. The value r*(N) can be determined from the equa-
tion for the (N+1) -=t component. Repeated application of this procedure

* *
yields the values r (N+1), r (N+2), etc., from the matrix equation

n-11
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Figure 1I-2(b) illustrates how the backward extension of the autocorrelation
function is accomplished using the complex cornjugate of the backward pre-
diction filter. Figure II-2(a)depicts the corresponding forward extension with

the complex conjugate of the forward prediction filter.

When this maximum entropy method of autocorrelation function extension

determines the unavailable lag values, the resultant power spectrum

P(f) = .f. 2 :r(j) z) -1 Zr(j) e -iZ2wf3At
w € W & ¢
J= -0 =~

is the maximurn entropy spectrum. This fact can be verified by premulti- |

plying the power spectrum by W (VHA) and applying the method of undetermined

coefficients to the coefficients of zo, z-l, cee 4 Z ~(N-1), 2 -N ~-(N+j). -

9y o v e 5 &

had P

wvia) pi = via z :r(j) J o= ?N -
4 ally
j= -

Conventional spectral estimates with taper functions (Bartlett, Hanning,

Hamming, Parzen, etc.) are exactly equal to the convoulution of the maximimm
entropy spectrum with the frequency window corresponding to the particular

tapering method employed:

-1z




k . r( 1) r(z)..ﬁ't.......’..r(N-z) r(N"l)
: ® ) o hd
I—T ¥ * I D—

,; —aN -aN_lg.....‘...‘. -33 -az i _‘
| \

F2)  r{S)eeeesemecieenr(N-1) T(N)
*

. * * *

—aN -aN-ltouo-.‘ooo_a3 oaz

| \\\ r(N+1)

; \\‘
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(b) Backward Extension
FIGURE II-2
EX TENSION OF THE AUTOCORRELATION FUNCTION
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Z r(k)e-iz'(f-d,)kAt do

= -0

2
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o

+W/2
w ‘;1Z'¢}At

f-w/2 j= (N-1)

—
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- f+ W2
Z wjr(k)j é-xzﬂ‘fkbt e-12r¢(3-k)At dad
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1 -127fk At
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jx -(N-l) k= ~
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- ——;— w, rlj)e ,

e DL ik bk st e kit

since

+wW

o . .
e 12‘I¢(J-k)Atd¢ ) wsjk

&

[}

where j and k are integers, sjk is the Kronecker delta operator, and wj is the

taper weighting for the autocorrelation function r(j).

The equations
N-1

0= Z aj+ 1 r(j-k) (for all positive integers k)
j=0
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in the autocorrelation function extension matrix equation imply that

N-1 N-1
0= ¥ _ * _ *
= Z 3541 *tej Xtk T Z 41 Feoj) Btk T U ¥eek
j::O J=0

or that the crosscorrelation function between the forward prediction error

filter output q, and the time series values x befure the filter output time

t-k
is zero for all positive values of k. Similarly, the equations

N-1 N-1
% * _ EN
0= Z 241 ¥t T4k T 2 3541 *t4j] %eek T *tak P
j=0 j=0

imply that the crosscorrelation function between the backward prediction

error filter output P, and the time series values x after the filter output

time is also zero for all positive values of k. Fo:+tll:e values of k from 1 to

N-1, this result is a consequence of the fact that the (N-1)-point-long predic-

tion filter is optimum. For the values of k greater than or equal to N, this

result is a consequence of the maximum entropy assumption. If this assump-

tion is correct, the (N-1)-point-long prediction filter is also the infinitely long
optimum prediction filter, and the predictability of x, cannot be improved by using
the time series values Xtk at lags k whose absolute value is N or greater.

If the predictability of x, can be improved, the entropy or uncertainty of the

time series xt is less than

w/2
/ P At
N
log ——  df.
J w2 ViaA Vv

Since the forward predictior. error filter output q, is a linear com-
bination of earlier time series values Xk and the backward prediction error

filter output P, is a linear combination of later time series values x the

t+k’
equations

II-15

P

e~ mm miammte s damm A




; m-l ] N-1

f * * % * * .
Ul ;= Y Z x4l Ftoj-k| T Z 2141 % Teojox ¢ G21)
| =0 B =0
N-1 3 N-1 .
’ —_ " * % - % _ .
‘ p;q.j Py = z: )41 *t+j+HPr Z 341 Ftejex Py T 0 G2h
i k=0 . k=0
r  N-1 N-1
{ R % % % = *
9w = 9 Z el k| el U Xex T %X T Py
k=0 k=0
r L <
} e ctr——
' % N-lo, * N-1 & * 3
‘ PPy = ki1 k| Pr T Z kil MeexPeT %P T Py
k=0 k=0

imply that the prediction error filter output has a white power spectrum, that

the filter output power is P__, and that the filter output power density is PN/W

N
or PNAt. Figurell-3 portrays the relationship between the input power spectrum

and the white prediction 'rror filter output power spectrum correspo iding

to the maximum entropy assumption. The maximum entropy assumption that
the prediction error filter output is white is equivalent to an autoregression
model of order N-1 for a second-order zero-mean stationary time series.
The maximum en*ropy spectrum is known as an autoregressive spectrum in
the statistic=t literature (e.g. : Jones, 1974; Gersh and Sharpe, 1973). The
assumed whiteness of the forward and backward prediction error filter outputs ]

provices a means of testing the maximum entropy assumption: if the spectra of

the prediction error filter outputs are not approximately white, the maximum
entropy spectrum is not a good spectral estimate. This fact is useful in

determining the best length for the prediction error filter. More formal
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methods of identifying the order of the autoregression model such as Akaike's
final prediction error (FPE) criterion (Akaike, 1969; Akaike, 1970a; Akaike,
1970b; Akaike, 1971a) and Akaike's information criteron (AIC) (Akaike, 1971b;
Akaike, 1972a; Akaike, 1972b; Akaike, 1974) provide a means of objectifying
the maximum entropy spectrum. These methods are apparently not widely
known in the geophysical literature. Likewise, methods of estimating the
spectral mean and variance are available in the statistical literature (Kromer,

1969).

Since all zeroes of

. )
Afly 1+ a 2

(]

lie outside the unit circle, all zeroes of the forward prediction error filter

z-transform

also lie outside the unit circle because the roots of A(z) are simply the com-
plex conjugates of the roots of AHV. Thus the forward prediction error filter
is a minimum phase filter. Since its output does not precede any of its input

points, it is also a cavsal filter. The z-transform

[ ]
1 1 j
S cmm— = = 1 +
Cl=) = 25 N-1 2 : 41 %
. -
L4 ) j

j=1

of the inverse to the forward prediction error filter can be expanded in a
power series with no negative powers of z since the forward prediction error

filter has no zeroes on or inside the unit circle. The inverse of the forward

-18
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1
: ds

;, prediction error filter is also a causal minimum phase filter, The inverse

- filter can be used to construct the time series xt:

b
S E : “rel Yk © 2 :°k+1 Z 2541 %e-jok
r k=0 k=0 j=0
['5 .o
1 ;
E , ‘ [min(m,N-l)

.. - E : ‘ cm-n-l a+1l]l *t-m

m=0 l_ n=0
q ©
= 80m t-m = xt
m=0
i since
N-1 © - min{m, N-1) -
1= a zj c zk = a z"
j+1 k+1 m-n-1 n+l ;
j= 0 k=0 m=0 n=0
© ]
m
m=0

Thus the input time series can be generated from the forward prediction error

filter output using a causal filter (the inverse of the forward prediction error

b maa i

filter). The process is causally invertible: the causal forward prediction error

filter produces the forward prediction error filter output. If the maximum
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entropy assumption is satisfied (i. e., if the time series q, is white), then

the forward prediction error filter output is the innovations sequence (Kailath,
1970; Kailath, 1968; Kailath and Frost, 1968; Frost and Kailath, 1971; Kailath
and Geesey, 1971; Kailath and Geesey, 1973; Gevers and Kailath, 1973; Aasnaes
and Kailath, 1973) corresponding to the time series x, when it is a second-gorder
zero-mean stationary time series, Figure lI-4diagrams the relationship between
the innovations sequence and the input time series. An equally apt and more
succinct name for a prediction error filter is an innovations fiiter (as shown

in Figure I1-4.The backward prediction error filter is a maximum phase filter
(2 minimum phase filter if the direction of time is reversed). When the maxi-
mum entropy assumption is valid, it generates a backward innovations sequence
from present and future values of the time series X, In the vast majority of
practical geophysical processing situations, the optimum prediction error
filter coefficients tend to zero as the leagth of the filter increases. Conse-
quently, the prediction error filter output approaches an innovations sequence

as the filter length increases indefinitely.

To solve the prediction error filter design matrix equation, a simplified
form of a recursive algorithm first developed by Norman Levinson (Levinson,
1947) and later presented in the statistical literature (Durbin, 1960) is available.
The (N+1)-point-long prediction error filter can be created from the N-point-
long prediction error filter through the determination of the single coefficient

a;::ll in the (N+1)-point-long filter:

—r(O) :_ r(1)eccecceee r(N-l):r(N) T/ 7 : 0 R
1) L r(0)seeseren x(N-2) j(N-1)| | | a3 [y
E | E ".. E 1 E 7 e + N+1 e
N BT
r‘.‘(N-l)| r*(N-Z)n....r(O) ‘r’l) aN (aN )*
- TS - —— |- —-2---
K (N) | r (N-1)eseeer (1) 1 £(0) i _o_ 1
11-20
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where
: N-1
Ay = D YN
k N A ¢ NG
j=0
{r Setting
‘ N+l
3N+l - AW Py
yields the prediction filter weights (A+ aN‘l'l P, = 0) and the power P
N+l " M N+1
of the (N+1)-point-long prediction error filter output: ,
[+

N+l N+l \*| _ N+l / N+l
PNt 3N [‘ PN (aNH) J = Px [1 " 3N+ (‘ml) * P+
The NXN solution proceeds recursively from the one-by-one problem, where

ol [ ey

The amplitude of the coefficient agii must not exceed one if the (N+1) X

N+1 is non-negative definite. This condition

is equivalent to specifying that the predic.ion error filter's z-transform has

(N+1) autocorrelaiion matrix R

no zeroes inside the unit circle (see Appendix A). A survey paper (Kailath,
1974) on linear filtering theory discurses some of the implications of Levinson's

algorithm,
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the determinant of RN is

N

IRN|= II -~ .

e e

J
j=1

and the inverse of RN is

b o iteni b

g —— — ——— —

s -1 socscssnconse N Y% N)=* N )* E
| 1 0 ::00000000009000000 (') PN 0 ... (:) 1 (a Z) (a. 3) csvssssve (a.N . i
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because

B e (O

|
|
1

1 N)* 1'(0) 1'(1) sccsovecee r(N—l) 1 0:00..0.000.0.00
% ‘e, e
R N-1 [T YT T N-l)* * N . .-. 4
A i B LA
'E:‘ E ....' ..... ..'. E : : 0.. : N N- ... ‘.. :
L e 'o.. .o.. ‘e b4 E b4 .c. M a 3 a 2 'o.. '... e
t E ..... .Q.... ., i * E E .... s E : -'-. C... '...:
;; E o... 1 (az) E : o... E E 3 o... 1 0
* ®e, * * % o N N1 =
4 9880000080000 0000000000 - -2 oocssee (X111 1]
° 0 1 |[F WD N-Zeeeeenen(0) Ay 3y genetay L
E
E = —_
E' PN 0 ;:ooooooaoocuooooooo?
? "o' PN - 1....0' §
k § ...... PZ 0
O scescevcecscocssesccs () Pl-j .

(The zexoes to the right of the main diagonal in the last matrix occur because

the matrix is Hermitian, and this fact is true since the matrix to the left of

the Hermitian autocorrelation matrix is the conjugate transpose of the matrix

to its right.)

If w is substituted for r(N) in the (N+1) X(N+ 1) autocorrelation matrix

t \ .
RN+ 1’ the determinant is

IRN+1'= lRN-l'(c+ w: W+ W w*-ww*),

* ’ *
where c is a term not involving w or w andIRN 1' v, is the coefficient for w .

Since the determinant'R

Pl through P

N4 1| is also the product of the prediction error powers

N+ 1’ it is also equal to

|RN+ i IRN-I‘(’z A F [Rxt

~ r *
2 N+1 / N+1
PN ll T AN+1 (aN+ 1) .
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S The determinant is maximized when a::i = 0 or, equivalently, when w = w_,
-- so that r = P and
i N

LX) N-l

- _ N ) ¥ .

L Yo T Z (aj+1 T(N-j) -

=1
";" As shown earliev, r(N) = w is the maximum entropy extension of the auto-

k . correlation function. An alternate but equivalent entropy definition requires

that the determinant lRN+ 1I be maximized by the proper choice of r(N) in

order to marimize the entropy of the time series x, (McDonough, 1974).

T T A ST i e e e s e i o

The fact that the maximum entropy autocorrelstion function extension de-
scribed here does indeed maximize the determinant 'RN+ 1'means that the
£ . two entropy definitions are consistent. Since the autocorrelation matrix is
non-negative definite, the autqcorrelation function value r(N) must lie on or

The maxi-

B

within the w-plane circle described parametically by w + ewPN.
; : mum entropy autocorrelation function extension places the value r(N) precisely

ﬁ .. at the center of the circle. Any other choice of r(N) is biased in the sense that
S it adds information not based on the autocorrelation matrix Ry Thus, when
F. . the autocorrelation matrix RN is precisely known and nothing is known about

the autocorrelation function at lags of N or greater, the maximum entropy

X spectrum is the most reasonable power spectrum possible.

st ok Lt i
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SECTION III
THE PURG TECHNIQUE

The Burg technique (Burg, 1968) is a method for computing the pre-
diction error filter coefficients directly from a finite-length time series x
(t=1,2, ... , T-1, T). By using the Lievinson recursion relationship described
earlier, this procedure guarantees that the forward prediction error filter is
minimum phase and that the associated autocorrelation matrix is non-negative
definite. Minimizing the average power of both the forward and backward
prediction error filter outputs to obtain the filter coefficients provides g.eater
reliability in their estimation. In this algorithm, no assumptions about the
time series before or after the measured values are made, so that end effects
are avoided. The advantages of the Burg technique are particularly pronounced

when the number of points in the time series x, is small.

Since the coefficient of a one-point-long prediction error filter is one,
both the forward and backward prediction error filter outputs at time t are
equal to X, Computation of the pre-iction error power for the one-point-long
filter initializes the Burg technique:

The autocorrelation function value r(0) is equal to Pl'
Once the N-point-long prediction error filter outputs and coefficients
are known, the (N+1) -point-long prediction error filter is formed from the N-
point-long prediction error filter through the determination of the single coeffi-
cient aN+ 1 in the (N+ 1)-point-long filter. With the aid of the Levinson recur-

N+1
sion relationship between the N-point-long and (N+ 1) -point-long prediction

m-1

S|
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error filters, the forward and backward (N+1) -point-long filter cutputs

can be expressed as a linear combination of the N-point-long filter out-

puts:
N+l _ Nél N 0N
N © ®Ne1 Pr 7 4N
N+l o N N+1)* N
Py % Py N+1/ fuN

where q? and pI: are the outputs at time t from the N-point-long forward

and backward prediction error filters, respectively. Figure III-1 illustrates

T AV AR L TRTYEREE CRLES AR AR RS T T T el e mE A T A nE e T Ty

this relationship, which was first stated explicitly in the literature by

Andersen (Andersen, 1974). The coefficient aN+ ! is chosen to minimize

N+1
the average
T-N
E _ 1 Z N . N+l N,Z+'N(N+1)*N 2]
N+l =~ 2(T-N) t+N N+1 Py Pt Bnel/ Tun J
t=1
_ 1 N pN (pN) + ClN (qN ) 1+aN+1 (aN+ 1)"
- t t t+ t+ N N+1 +1
2(T-N) N N
t=1
T-N . -N *
. N(NTN+1+ E(N)N (aN+l)*
Z Py N/ | 2N+ Pe) %N |\t
t=1 t=1
of the forward and backward prediction error powers. EN+ 1 is a minimum
when its partial derivatives with respect to the real and imaginary parts of
aN+1 are zero:
N+1 :
SE OE
N+1 N+1
8Re a1 dIm 2N+ 1
IoI- 2

P PR T T e g

R L . a — i L ‘ ‘
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FIGURE III-1 3

FORMATION OF THE (N+1)-PCINT-LONG PREDICTION ERROR FIL TER
OUTPUTS FROM THE N-POINT-LONG PKEDICTION ERROR FIL TER
OUTPUTS USING THE LEVINSON RECURSION RELA TIONSHIP !




T-N § -N .
‘ 1 [ N(DN)* . o N N ) Nt ZE(N) N
“(T-N) I Py Wy 9 +N (qt+N N+1 Py 4. N|)

“- t=1 =1

so that agi i is chosen to be T-N .

; N N

; 5

i ' E <pt) TN
N+1 t=1

N+1 © T TN

2o [PTY) Tl W)

t=1

R b 20 i L P L o S G o

Since the summation in the numerator is the inner product between the vectors
(pl, Pyt oo s pT-N) and (qN+ 1’ qN+ PR qt) and the denominator is the
sum of the squared :nagnitudes of these two vectors, the absolute value of

N+1 never exceeds one. If the absolute values of az 33 N+1 are
N+ 1 . 2" %30 °7 ANy

all less than one, then the forward prediction error is minimum phase (see

Lad sag

. Ce e N+1 . .
A). tut
Appendix A). Substitution of aus1 into the expressionfor EN+1 yields

L

T-N . ;

B 1 Z N/ N N N \# N+1 N+1)* '

Enel © TN Py (pt) * qt+N(qt+N) l-ani1BN+1 . ,
t=1

The (N+ 1)-point-long forward prediction error filter is determined ;

from the Levinson recursion relationship:

1 [ (0
1

N+1 aN (aN)*

) 2 N

N E salit! :

IR Nl R

N+1! | N (aN)

N °N 2

N+1

a 0 1 .
AN+l i i
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The prediction error power for the (N+ 1)-moint-long filter is also determined

from the Levinson recursive relationship:

N+l /N+1l, %
Pus1 = Pn [l'“ml aml) .

2
Nl If the absolute values of az,
are all less than one, then the matrix RN+1 is positive

This power is, in general, not equal to E
3 N+1
3 o
definite since the successive determinants

a

k
lei=nPj k=1,2, ..., N+1)
j=1

are all positive. If desired, the corner elements r(N) and r*(N) in the matrix

RN+ y can be recursrively determined from the bottom row of the (N+ !)-point-
long prediction error filter design matrix equation:
N *
r(N) = -Z (aﬁfll) r(N=j).
j=1
Thus the matrix FN+1 can be determined from Pl and the successive pre-

diction errur filters,

From the prediction error power PN and the N-point-long prediction

error filtér coefficients, the maximum entropy spectrum

BP_ At
N
P(f) =
N=1 2
14 a N . i2mfjlt
j+1
j=1
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3 corresponding to the Burg technique can be calculated. Empirical comparisons
of the maximum entropy spectrum using the Burg technique with the maximum
entropy spectrum using estimated autocorrelation functions (e. g., Radoski,
Fougere, and Zawalick, 1974) indicate greater resolution and spectral accuracy

is possible with the Burg technique. As far as known, however, there are no

G S Ty

definitive statistical studies to support this claim. Furthermore, there is no
: known objective method for determining the crder of the autoregression model
when the Burg technique is used. Akaike's criteria appear to be inextricably

linked to autocorrelation functions estimated by the formula

T-j

1 w _ 1 2 : *

E r(j) = T x, xt+j .
t=1

; The statisticalevaluation of maximum entropy spactra using the Burg technique,
therefore, appears to be an area meriting more detailed scrutiny. At the

present time, the choice of the prediction error filter length for the Burg

—y

technique is a matter of subjective judgment.

Since the Burg technique computes the prediction error filter coefficients

and filter output power directly, the autocorrelation function is not needed for

the maximum entropy spectrum. In fact, the autocorrelation function lags 0 to

N-1 or the order N-1 maximum entropy spectrum or the N-point long predic-

tion error filter and its output power contain equivalent information. Figure II1-2
illustrates the relationships between these three functions. A knowledge of ;
one permits the other two to be determined. Figure III-2 presents some, but by

no means all,of the ways to accomplish the transformations between these

three functions.

The other principal use for autocorrelation functions is in time-domain

e et

digital filter design, where the inverse of the autocorrelation matrix RN is

needed. As shown carlier in this paper, however, the inverse is

III-6
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which can be obtained from the successive prediction error filters and their

PV

error powers,
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SECTION 1V
THE K-LINE SFECTRUM

When the crosspower spectrum matrix for an equally-spac=d line array
is available, there is a wavenumber analogue to the frequency-domain maxi-
mum entropy spectrum described previously in this paper. It is known as the
K-line spectrum and was developed by John Parker Burg while at Texas

Instruments.

If a space-time wavefield can be described as a superposition of plane

waves, then the inverse Fourier transform

w/2

r(j) =I P(k) e
w/2

-i27kjA
1T gk

of the waverumber spectrum P(k) is equal to the crosspower spectrum for
two sensors at a spatial displacement of jAx, where Ax is the distance be-
tween two successive sensors in the line array. This fact requires that all
crogsspower spectra corresponding to the same spatial displaceraent be
identical:

j -i2nfr
r(j) = ¢m,m+3(f) = f ¢m,m+j(r) e dr ,
-0
where

T

1im 1
¢m,m+j(f) % dee 2T [ gm(t) gm+j(t'r) dt
T
1v-1
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is the crosscorrelation functica at a time lag 7 between tne output gm(t) of
the m-th sensor and the output gm+j(t) of the (m+j)-th sensor, and where
t denotes the time of the sensor output. As a result, the NXN crosspower

spectrum matrix

r ¢ [ IYY Y] T [ei [ 2T XY YTy Y) - Y
4’11(f) lz(f) ¢1N(f) r(0) r(l) r(N-1)
%
Ry = 10 QZZ(f.):"" an@ [gr (1) T(O)geeseneeeee TN -2)
® 5 4»5 *:N 1 *.N 2 :)
1) B e (0| [FT(ND) £ TN-2) e T(0) |
for an N-element array with sensor coordinates 0, Ax, 24~ ..., (N-1) Ax

is a Toplitz matrix as well as a Hermitian non-negative definite matrix,

If wW=1/Ax%, z= e 127k/ ”, and the vectors V and A are, respectively,
1 [ ] (1]
V= 1|2z = elz’:ﬂ"Ax and A = a,
"N-1 i27k(N-1) Ax :
z e aN ’

the wavenumber maximum entropy spectrum is

Pik) =

w i, H N-1 2

1+ E a e-iZfrijx ’

where P__ and az, TR a.. are solutions of the matrix equation

N N
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-r (O) r(l) sececscvsesss r(N- li- -l —PN—
r*(l) r(O) :oorooooooooo r(N Z) 32 0
r¥(N-1) 1 (N-2) seereces £(0) a:N 0 .

The proof is very similar to the proof for the frequency-domam maximum

entropy spectrum and has been given previously (Barnard, 1969).

In ttc case of the wavenumber maximum entropy spectrurn, the forward
prediction error filter with weights (1, 3y e s aN) is a spatial filter whose
output is the error in estimating the N-th sensor from the first N-1 sensors.
Figure IV-1lillustrates this situation In the figure, xj(f) denotes the Fourier
transform of the j-th sensor output. The backward prediction error filter
with weights (a;: y oo o a; » 1) outputs the error in estimating the first sensor
from the second through N-th sensors. The term PN in the filter design matrix
equation is the spatiil_piedicﬁon error power density spectrum and is equal
In
( or autopower spectrum) of the two quantities below it.

*
tc both qN and P, pl » where the vinculum denotes the crosspower spectrum

In practice, the assumption of space-stationarity is not satisified and

the elements along any diagonal are not equak

® () # H (m+# n).

® .
m, m+j n,ntj
The easiest way to remedy this problem is to average the elements along each
diagonal of the crosspower spectrum matrix. The ensuing spectrum is the
wavenumber analogue of the standard autoregressive spectrum. If this pro-
cedure is performed, however, the resulting Toplitz matrix may not be non-

negative definite.

Another way to compute the wavenumber maximum entropy spectrum
is to use a modified version of the Burg technique. The procedure begins by
averaging the autopower spectra to estimate the 1-point-long prediction error

power density spectrum:




xl(f) xz(f) .................................xN-l(f) xN(f)
o L o ®

aN(f) a (f) o--o.ooocoooooo‘oo-o.-uo-o-ooo.az(f) al(n = 1

N-1
TR

Forward Prediction Error = q = 2 4 (0 XN-j(f)
j=0

(a) Forward Spatial Prediction Error Filter

Xl(f) xz(f) ..................................xN_l(f) XN(f)
° ° [ °

* ()

* x *
al (f) - 1 az (f) ©00000000000000000000000000 aN-l(f) aN

T
v N1

%
Backward Prediction Error = P, = E (f) X

o 341 j+1
J:

(b) Backwird Spatial Prediction Error Filter

FIGURE IV-1
SPATIAL PREDICTION ERROR FIL TERING
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1 * 1

; P, = N Z xm xm - N 2 : .mm(f) ’

-~ m=1 m=1

_ Then the zlgorithm continues recursively with the minimization of the spatial

- prediction error power density spectrum
r N-M 2 * 2
L - E _ 1 M + aM+1 M + M +(aM+l) M
ie M+1 2(N-M) Z ImiM M+l Pm m M+1/ ImiM
'* m=1

E . . . M+1

* for the (M+1) -point-long filter by setting a1 equal to

. N-M Z

i« Z M)\ M

-2 (p m) clm+ M _2S

: M+1 m= 1 _ 1

i “M+1 "N-M = 7 S, '

~ R, (o

1 Pm \Pm Ym+M \Im+M

‘- m=1

i where Sl and Sz are

g M ssesese M I -X i * X* """"x* I T

. M 2 m+ 1 m “m+l m+M-1

: M

HES Sl = E X § E

: m=1 m+M-1 :

! X M

. L m+M | EM_

D Y - X PP 4 it
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EM ) IJ m+1,m(f) ®nil, m+ 19 ety l,m+M-l(Q 1
4 - : : : M
: Z : : : 2
= = Pm+M-1, m i M-1, m+ 19 % M- 1 me M1 :
(9 (£) »oeee o |) {M
m+M,m ®niM, m+ 1 ®niM, m+M-1 M
: * ar - —
?; M y M * * secacscsssee * _]
:‘ ‘E (a 2 ) oooso(&M)] Xm mem+ i Xm+M_1] 1
: o
{ N-
2 : .
i Xm+M-1 M
3 # Fr — - -
M M ¥ eseewe
3 E (az) "”"(aM) J CasM -t(erMxrmM-l xm+ﬂ! 1
1 * M
’, + Xt M-1 22
* ;M
1
B m+ B " M ]
* [ —_ . — F
M M)*
E (“ 2 ) ) '(a :l 1
] c = |
e |
o™ ] |
— - ' {
?
]
i
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‘e and where

L -
.E' ‘- L‘Q ‘OH.MI‘Q Q..-N l‘ﬂ + %4‘ M-1, m+ -(ﬂ sesvee ‘n.m# M-l(q M %n# I.ml‘“

; A N-Mle 10 M mene1® Gnimet™ S Sl me a0 0 i ® L Yt e M1
.. [c]= z : : S :

b4 . ‘s .

3 =] H . [ H

i . . . .

1 ) . P4 ., .

f b4 -

' : : ., :

! O .

: ' G -1, mP s md, me 10 Snnt-1, me 10 $nanecl, me (D eoececen it mesd-1™ Cuit me 10 1 .
; L

i

. M+1
Aside from the way aM+ 1

technique proper. Normally (but not always) the procedure continues until the

is computed, the rest is the same as for the Burg

prediction error filter length is the same as the number of sensors.

The absolute value of ax:i never exceeds one since

2 * ¥
M\*¥ M 1| M (M) M M M)]
l (PM ) qm+ MI < -Z— P m pm + qm+ MVUm+ .

(The absolute value of a crosspower spectrum never exceeds the average

value of the two corresponding autopower spectra).

Because the prediction error filter outputs are not available, the
crosspower spectrum matrix must be used in applying the Burg technique
to wavenumber spectra. This fact makes the required computations more

cumbersome, especially for arrays with many sensors. If, in certain situa-

e

tions, some loss in spectral resolution and accuracy can be tolerated, the

e

wavenumber analogue to the standard autoregressive spectrum provides a

reasonable alternative.
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APPENDIX A
TEST FOR MINIMUM PHASE SAMPLE POINT FIL TERS

(by John Parker Burg)

In this appendix, a simple test is developed to determine whether a
finite length sample point operator is minimum phase. The development of
this test, which is known as Jury's stability test (Jury, 1962) in the theory of

sampled data control systems, is contained in the book The Geometry of the

Zeros by M, Marden (Marden, 1949). The justification for presenting this
test and two important theorems about the zeroes of a polynominal in condensed
form is their apparent newness to geophysical workers in the field of digital

filter theory.

A sample point operator is defined here to be minimum phase if and

only if both the fitter and its inverse sample point filter are

1) physically realizable (i.e., their z-tranforms are Taylor

n
seriesinzoftheformao+ a, Z 5 ... + anz + ...), and

2) stable (i. e., their z-transform series converge for |z| =1).

This definition is equivalent to saying that the z-transform of a mini-
mum phase sample point operator is both analytic and non-zero on and inside
the unit circle. Since a finite length, physically realizable, sample point
operator is analytic for lz!<n » the test for minimum phase becomes one of

N

determining whether all the zeroes of a polynominal, a + a, z + ... 4 ag %o

are outside the unit circle.
To develop the test, two important theorems about the zeroes of a poly-
nominal are first proved. These two theorems and the test are valid for poly-

nominals with complex coefficients.
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Principle of Argument Theorem

Let C be a simple closed Jordan curve in the complex plane and let
F(z) be a polynominal in z, none of whose zeroes lie o.. 5. Let A be the
total phase shift in F(z) as the point z traverses C once in a counterclock-
wise direction. Then the number of zeroes of F(z) inside C, counted with

their multiplicities, is given by A/2m, N

. _ N . ! I
Proof: Factoring F(z) = a + alz + .0 aNz into aN (z-ai),

i=1
we see that each root which lies inside C cnntributes 27 to the total phase

shift of F(z), but that each root outride of C has zero contribution.

Rouché' s Theorem

If P(z) and Q(z) are two polynominals in z for which |P(z)| > b(zﬂ on
a simple closed Jordan curve C, then the polynomial F(z) = P(z) + Q(z) has

the same number of zeroes inside C as does P(z).

Proof: We should first note that since 'P(z)’ > iQ(z)‘ on C, P(z) and F(z)
cannot have any zeroes on C. Writing F(z) = P(2) [1 + Q(z)/P-(zﬂ. the total
change in the argument of F(z), -as C is traversed once in a counterclockwise
direction, is the sum of the total phase shift of P(z) and 1 + Q(z)/P(z). But
since |Q(z) < 'P(z)' for zon C, the real partof 1 + Q(z)/P(z) is always posi-
tive for z on C and thus has a total phase shift of zero. Therefore, F(z) and
P(z) have the same total phase shift and thus, from the Principle of Argument

Theorem, they have the same number of zeroes inside C.

Minimum Phase Theorem

A finite length sample point operator is minimum phase if and only if
its z-transform is given by aoQN(z). where QN(z) satisfies the recursive

procedure

i il s . s e eataitniodiinini SRS ‘M
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1

Q (5 + T 2® [Qn_l (z'l')]* (A.1)

Q_ (z)

Q,(z)

with all !?.'n|< ' .

Proof: We prove that a filter generated by this recursive procedure

will be minimum phase by noting that

+ zz + + zn
lz az “con an

and thus are analytic on and inside the unit circle, and

1) The Qn(z) are of the form l+a

2) Starting withQ (z) = 1, which has no zeroes on or inside
fo * R
the unit circle, we see that Eln_l(z)] = [Qn-l (z )]

Qn-l(z)'> T,2 ‘_—Qn-ll (z’l *)]*

the unit circle. Therefore, using Rouche's Theorem

on

for lz' = 1 and thus

repeatedly, QN(z) will have no zeroes on or inside the

unit circle and thus aoQN(z) will be minimum phase.

That any finite length minimum phase filter can be obtained from (A. 1)
is proved by seeing that the reverse of the recursive procedure is unique and
that all'rnl will be less than one. Letting FN(z) be the z-transform of an N+1
point minimum phase filter after normalizing the first term to one, we can

write

l+bz+bzz+...+b z + b_.z

F(z) 1 2 N-1 N

2 N-1
[l 4 c1z+ czz + ... + cN-l z

* * 2 N-1 N]
+ L ]
bn[cN-lz+ CN-ZZ + ...+ Cc, 2z + z » (A.2)

where the c are determined by the equation

A-3
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| 1 bylle, b,
%* . x* = K
by b Hen-s] Pa-sl . (A. 3)

Since FN(z) is minimum phase, all of its roots, a, . are greater than

one in magnitade. Therefore, since

N
-1
bN = n (-ai) .
i=1

|bN |< |and (A. 3) will always have a unique solution. Furthermore, from

e T S S

: Rouch@'s Theorem, the first polynominal on the right had side of (A. 2) will
also be minimum phase. Thus, the recursive procedure of (A.1l) is uniquely

reversible with all |rni<l for a finite length minimum phase filter,
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APPENDIX B

COMPARISONS OF THE CHARACTERISTICS OF MAXIMUM ENTROPY
AND DISCRETE FOURIER TRANSFORM SPECTRAL ESTIMATION

In this appendix, a brief comparison is made between the characteristics

nf max. mum entropy and discrete Fourier transform spectral analysis. This

appendix is taken from a contractor report (King, Swindell, and O'Brien, 1974)

and was written by William H. Swindell, Jr. Several of these comparisons were

obtained from an excellent paper by Lacoss (1971).

1. Estimation of Autocorrelation Function

ME

DFT

e

Uses known lag values unmodified. Unknown lags

are estimated in an optimum manner.

Weights all lag values with some function introducing

spectral window effects in the spectrum.,

2. Spectral Window Effects

ME

DFT

No spectral window effects as such are introduced
since the autocorrelation function isknown or estimated
for all lags. However, similar but greatly reduced
effects occur when the prediction error filter does

not create a perfectly white output.

Window effects are always present. Spectral estimzies
are exactly equal to the convolution of the maximum
entropy spectrum with the frequency window corre-
sponding to the particular tapering method employed.
These estimates tend to be the convolution of the window

function and the true spectrum.

B-1
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4.

Estimate of Peak Power Density of a Pure Tone of Power P

ME : Proportional to PZNz where N is the number of

measurec autocorrelation function lag values,

DFT: : Proportional to P but subject to picket fence effect

from spectral v ndow.
Estimate of Bandwidth of a Purs Tone
ME : Proportional to II(PNz). ‘
DFT : Proportional to 1/N.
Estimate of Spectral Power in a Pure Tone
ME : Proportional to P.
DFT : Proportional to P/N.
Estimate of Line Frequency

ME : Difficult to define but can be estimated very closely.
(See Chen and Stegun, 1974, and Ulrych, 1972).

DFT : i 1/(2NAt).
Spectral Reliability

ME : Difficult to define, Asymptotically, for data with
low spectral contrast, the degrees of freedom, K, is
less than or equal to L/N where L is the nun:ber

of data points in sample .
DFT : K=2L/N for Bartlett window.
Linearity of Spectra

ME : Estimation is nonlinear. The spectrum of the sum
of two time series is not equal to the sum of the

spectra of the individual time series.

B-2
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DFT : Estimation is linear. Superposition of spectra is

valid.
9. Resolution of Closely Spaced Spectral Lines
ME : Resolving power is data-dependent and difficul* to

define but lines can bLe separated at a frequency

increment approximately proportional to 1/ Nz.

DFT : Lines can be separated at a frequency increment

proportional to 1/N.
10. Spectral Line Detectability

The maximum entropy spectrum is clearly superior to the discrete
Fourier transform spectrum for weak signals in short data samples where
the discrete Fourier transform processing gain is low. For long data samples
where the naturai line width is greater than 1/(NAt), this advantage is reduced.
For fixed N, taking longex data gates L increases detectability for the maxi-

mum entropy spectrum because of better autocorrelation lag value estimates.
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APPENDIX C

THE USE OF THE BURG TECHNIQUE IN
FILTERING SHORT RECORDS

This appendix summarizes a method for filtering short data records.
The algorithm, described in a recent paper (Ulrych, Smylie, Jensen, and
Clarke, 1973), applies a prediction filter to the data to extend the original
i A time series, Fourier transforms the extended time series, multiplies the
. Fourier transform by the desired filter frequency response, and obtains the

filtered time series through inverse Fourier transformation.

Suppose that the Burg technique has been used to design an N-point-
long prediction error filter from a short time series x (=12, ..., T).
: If the maximum entropy assumption is valid, the autocorrelation function sat-

isfies the relationships incorporated in the following matrix equation:

y — -/ T — !
r(O) r(l) eeoesecsecssoe r(N-l) 1 PN
%
r (1) r(O).::..ao.oo-..oo r(IN-Z) az 0
% : *‘ ....'o. : 5 : 4
r (N-l) b o (N—Z) esescsses ;'(0) a _ 0
e e e o - - — - - ——— ] Ni= == 3
% * % * L - i
r (?) r .(N—l) evsessces I .(1) (‘) 1
P : : |
* * * ¥ .
r (N+J) r (N-1+j) sessee Y (1+j) 0
. : : _ N
The optimurn (N-1)-point-long forward prediction filter with prediction

distance M, con the other hand, is obtained from the filter design equation
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? r(o) r(l) ooc.o.oo.ooo.or(N-z) a? rr (M) -
* *
r (1) r(O) o:ooooooooo.oo r(N-3) ag = r (M+ l)
% * e, 8 M * s
r (N-Z) T (N-3) ecevesose r(O) « r (M+ N-Z) R
: L 4 L N-1L L
‘ From the first of these two matrix equations, it is clear that
; L
1 i
: [ -
1 %2 |
1
| a.z = -?3
ol H
| N-1] [N '

so that the one-step forward prediction filter output at time T+1 is

N-1
A .
x(T+1) = - E aj+1 x(T+1-j). |
i=1 ,'
For 2<MZ N-1,
_ - _ - - - _ i
* * % * i
r (M) r (M-1) r (M-2) r (M-N+1) !
* * ¥* %
r(M+1) |___ [T (M) e |FM-L (T (M-N+2)
S 2 E 3 E . e e * :
% x % 4 * °
Lr (M+N-2) r (M+N-3)| |r (M+N-4) r (M-1)
M-1 M-2] B! 4
1 1 1 )
M-1 M-2 1
= - - AN a )
a,Rn-1 |72 a;RN-1 | %2 aMmBn-1] %2
M-1 M-2 o} |
| N-1 | | N-1 | | N-1 -




g

S ST S I T rl
—)
J
[
|
.

BRI T T
AR Y A

LR Tt - § R

“aM+1TN-1 “aM+ 2 °N-1 N N-1

o]
O esvsse O - o
O escvse psistesse O

O secesscnes O

Y
)
t
!
—

-

and premultiplication of this equation by the inverse of the (N-1)X(N-1) auto-

correlation matrix R 1 yields the M-step prediction filter

T e ez

N
P M M-1 M-2 1
L *1 *1 “1 “l
g A A J
- M M-1 M-2 1
: } = - - a - - «
S 2 3, % 2, 2 Ry 2
S M M-1 M-2 1
. a a
N | “N-1] | “N-1 | “N-1 “N-1
o - - . .
f‘ 1 0 0
. 0 1
, : . :
‘ “AM+l : M2 0 MRS\ 1 ,
: : : |
. 0 (.) 6 ’
_ L e

so that the M-step forward prediction filter output at time T+M is

M-1 N-1 E
A _ z : A L 2 : M ;
x( T+ M) ) aj+1 x(T+M-}) aj+1 x(T+M-j). ’i
j=1 =M 1

C-3 :




For M2 N,
! * M-1 M-2 M+ 1-N
r (M) o, a; o«
" M-1 M-2 M+ 1-N
- -a R o - -
T (ML) E-aRa | %2 f3N-1] 2 *NFn-1l¥2
! x - M-1 1:4-2 !:/I+ 1-N
] T (M+N-2) -l N-1 *N-1
] - - U - - - .
E and
M M-1 M2 aM+ 1-N
1 1 1 1
M M-1 M-2 M+1-N
= - a - o bt T Yl
“2 22 2 a3 | %2 N %2
M M-l aM-Z oM+ 1-N
] N-1 N-1 N-1 N-1
~ — L. - - - - N
so that the M-step forward prediction filter output at time T+M is ‘{
g
N-1 ]
A Z A , ]
= - - {
x(T+ M) aj_+ 1 x(T+M-j) {
j=1




Thus the optimum M-step forward prediction filter outputs Q( T+ M)
from the final N-1 measured points can be formed recursively using the (N-1) -
point-long prediction filter with the weights (-a

-a -aN) obtained

2. 3. es s
from the Burg technique. First, the one-step lorward prediction filter output
is formed from the final N-1 measured points:
N-1
A - L z s
x(T+1) = aj+1 x(T+1-j) .
j=1
Later, in place of the unmeasured points in the formula
N-1
A .
x(T+M) = - E aj+l x(T+M-j) ,
=1

the prediction filter outputs Q(T+M-j) are substituted for the points x(T+M-j)
where no measurements are available. Similarly, the optimum M-step back-
ward prediction filter outputs Q(I-M) from the initial N-1 measured points can
also be formed recursively starting with

N-1

dop = - DA, x0)

3=1

and continuing with the appropriate substitutions in
N-1
A * .
x(1-M) = - E aj+1 x(j+1-M) M 22).
j=1

According to the originators of this met >d, predicting the time series to a
total len, 'h four or five times the original length produces acceptable filtering

results.




T T e

Once the extended time series has been created, the discrete Fourier

transform of the extended time series is multiplied by the desired filter
response in the frequency domain, and the filtered trace is obtained from the

inverse Fourier transform.

¥or a more detailed exposition of this method and for illustrative
exam; ;, the reader is referred to the original paper (Ulrych, Smylie,

Jensen. d Tlarke, 1973).




- APPENDIX D
OBTAINING REFINED ESTIMATES

{

: 4 OF SPECTRAL PEAK PARAMETERS
t - In the maximum entropy spectrum, the power in the band immediately
) surrounding a spectral peak is a more reliable indication of line strength
T than the maximum power density. This appendix, written by William H.
’, i Swindell, Jr., and based on John Parker Burg's notes, is taken from a con-
' tracter report (King, Swindell, and O'Brien, 1974). It presents, among
other things, an exceilent method for integrating the power around a spectral
peak in the maximum eutropy spectrum.
, . Pertinent parameters of a spectral peak in a power density spectrum
“ - are:
: . Center frequency
° Peak spectral density ‘ :
° Total spectral power
° Bandwidth at -3 dB points.

Because of the extreme sharpness of some spectral peaks in a maxi-
mum entropy power spectrum, there is considerable difficulty in finding the i :
value of the peak density, the total power, and the bandwidth of the peak. Unless

the frequency response of the prediction error is measured with a sufficiently

fine frequency ir.crement, highly misleading spectral estimates may result,

In Figure D-1, an example is shown of a maximum entropy power spectrum

[

which is evaluated at frequencies separated by an increment Af resulting in
power density estimates designated by the large dots. A dashed line connecting !

the dots is the line which would be seen in an ordinary plot. A peak is indicated
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at P?. with the power densities of Pl and P3 on each side. The true
response of the filter is shown by the continuous line at a true center
frequency of fo . Itis obvious from the figure that the indicated peak
density P2 is almost 10 dB smaller than the true peak and that the center
frequency is actually closer to £3 than fz .
A means of obtaining better estimates of peak density, etc.,is outlined
below. The technique is based on the fitting of a curve representing the response
of a resonant circuit to the spectral estimates Pl ' P2 , and P3 . The complex
response of a maximum entropy filter near the region of small filter response
(i.e., a spectral peak) is shown in Figure D-2. If Af is much less than 1/T,
where T is the length of the filter, the complex response in the narrow fre-
quency band near a point of minimum response can be approximated by a straight

line, Then from solid geometry:

2 2 2
Pr(f) = d 4+ m (f—fo) .

Thus an approximation to the power spectrum near f is proportional to
0

1 1
P(f) ~ 5 =
p)
pr(f) d2+m (f -£)
o
Defining:
2
= 1/d° = peak value
= 2d/m= 2/mya = bandwidth

then we wish to fit the following curve to the spectrum

P(f) = 2 (D-1)

1+ 4/b (£ - fo)z
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where:

P(f)

a for £f=1
o

a/2 for f=f0 + b/2

and the total power, Tp, is:

[ -]
T = I P(f) &f = — : (D-2)
P

-0

Substituting the three values of power density about a peak
(Pl(fl), Pz(fz), P3(f3)) into equation (D-1), the parameters a, b, ana fo

can be solved for:

fo = f2 + QAf (D-3)
- QZ
a = P2 1 + Zpl 3 (D-4)
| = - (1-Q)
ZP1 2 1/2
b = 2Af = - (1-Q) (D-5)
|
where
2P P
_ 1 3
R = P1+ P3 - B
2
o - P3 - P1
- 2R
Af = f3-f2=f2--f1
D-5
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Occasionally, when the frequency interval Af is too large, the
quantity (1 - Q)Z exceeds 2P1/R in equation (D-5) causing imaginary
solutions. A real solution can always be obtained, however, if Af is suffic-
iently small. In that event, the spectrum is interpolated at the midpoints
between Pl and P2 and P3 . This results in five power density estimates
at Af/2. The new peak density and its adjacent values are then used to obtain
a solution. This interpolation procedure may be repeated as often as necessary,

It is advantageous, however, to use a rather small Af to start with so that the

spectral density plots will give a fairly accurate picture of the true spectrum.

D-6




APPENDIX E
ADAPTIVE IMPLEMENTATION OF THE MAXIMUM ENTROPY SPECTRUM

The basic idea behind this technique is to smooth exponentially the pre-

diction error filter output products used to cstimate P

1
ficients ajii (J=1, 2, ..., N-1) in the Burg tecannique (see Section III).

and the ladder coef-

Older prediction error filter output points are weighted slightly less than their

immediate successors:

T
E k -txtx’t"
U, (T)
p . £ _ 9 ,
1 v, (T) ’
z: Tt
t=1
T
T-t, J 3
-2 k T (p. J)*q
t-J t U T
I+ t=J+1 _ Urn(T
J+1 T N VJH(T) ,
k'r-r[ T RN J)*]
Py 7'Peog q, 19,
t=J+1

where 0<k«].

The new prediction error filter outputs needed at time t=TAt are
computed from the prediction error filter ladder coefficients obtained at
t = (T-1)At. However, previously computed prediction error filter outputs
used in forming the new prediction error filter outputs are not recomputed as
the prediction error filter is updated. In th’ vay, the number of arithmetic

operations is made proportional to the filter length in points times the number

E-1
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of time series input points. If the ladder coefficients change slowly, i.e., if
1-k << 1, this procedure will have only a minor effect on the prediction error

filter outputs and ladder coefficients.

The numerator and denominator terms UJ(T) and VJ(T) (J=1,2,...
» N) are recursively updated as each new time series value X becomes

available, and the one-point prediction error filter output power and the ladder

coefficients air_i (J=1,2,...,N-1) are computed in the following manner:
kU (T-1)+ x
Pl(T) _ 1 ™ T
le('I‘-l) +1
J * J
JHry . Usa (T-1) - 2(pg 5} ap
J+1

J J * J , J %
kV, (T-1)+ [pT_J(pT_J) + aq (ag) ] .

Initially, the numerator and denominator terms U (T) and V (T) as
J+
27+
tion (T =1,2,...,N), only enough points of the time series xt are available

well as the ladder coefficients 1(T) are zero at T= 0 During 1mt1a11za-

to compute the prediction error filter cutputs for the T-point-long prediction
error filter, so that the T-th ladder coefficient cannot be updated until X

is availatble.

Figure E-1 is a flow chart of the procedure for recursively updating

Pl and the ladder coefficients agii . Before the update at time t = TAt, the
rocessed time series is of the form N N N-1 N-2
P PO 1 € *eor PoonNe1t ProNe PronN+l’ Pron+2?
sees Pp_ 30 Py oo pT-l = xT 1 xT . After the update, the processed time
series is of the form N N N N-1 4
© vt Pronelt Pront Prondn’ Prone2t tt0t Prose
p; 2 Pi. 1’ p}r = xT . All of the backward prediction error filter output

e St SR A
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points needed for the next update overlay the corresponding points of the input
time series. The successive forward prediction filter outputs q; (J=1,2,
.e.sN-1) at time t = TAt are computed as needed in the ladder coefficient

; update. Note that the backward prediction error filter outputs p;._J and the
‘ forward prediction error filter outputs qJT in the ladder coefficient update are
both computed from the prediction error filter obtained during the update at i
time t= (T-1)At. The recursive procedure described here has been outlined

' previously in general terms (Riley and Burg, 1972) but not explicitly stated

and differs from the technique actually implemented by Burg (Burg, 1974).
To compute a maximum entropy spectrum, the Levinson recursion
; relations
. 1 1 0
aJ+l aJ (aJ)*
2 2 J
. . J+1 . :
S I B R | @enzeNn
aJ+1 J ( J)*
I 23 %2
«1! | -t T .77 3
27+1 0 ! ,
aad - b — L— p—
and

N-1 |
_ J+1 , J+1 % 3
py= P Il [1 B TSRR IS ] |

provide the N-point-long prediction error power F_ .  and the prediction error

N

filter (1, aN, aN. esas aN » aN) needed in the power density spectrum
2 3 N-1 N
formula
P__At ;
N ;
P(f) - N-l 2 s
Z N  i27fJAt
1 + a’J+l e . I:
J=1
E-4




The power density spectrum requires considerably more computational effort
. than a single update of F‘1 and the ladder coefficients, If desired, the power
; density spectrum can be computed only at specified time intervals instead of

after every update in order to reduce the computational load.

¥ k=7/(71=1), k= e when m=1/1la[(7+1)/7] or approximately

T+ 0.5 when 7 is large, so that the time coastant for the adaptive maximum

entropy spectrum is approximately (7+ 0.5)At . After M updates, the num-

el e B AT R T

ber of degrees of freedom in estimating the power P1 is

= M
E Z (M-l 1 - M
j 1 -k :
‘ m=1

As M becomes large, this value approaches 1/(l-k) or 7+1 if k= r/(T+1).

The effective time delay is

\ M
- Al z (m-l)kM'l
m=] -kAt ) . kM‘l M-1
—_———— = - (M-1)k
M M M
M-1 1 -k 1 -k
k
m=1

after M updates and approaches -kAt/{l1-k) or -7\t as M becomes

large.

To test the adaptive maximum entropy spectral analysis technique de-

scribed here, a 1000-point-long chirp waveform

7 (T-1)°

Xy = x(TAt) = sin[ (T=12,..., TMAX)
2TMAX

was processed. The instantaneous frequency of this waveform is
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f(TAt) = T-1 .

2TMAXAt

The length of the prediction error filter was fifty points. The time constant
used in the recursive adaptive update was 100At, or twice the prediction error
filter length., After every ten points, the maximum entropy spectrum corres-
ponding to the current prediction error filter and the current prediction error
power was computed over the frequency band 0 to 0.5/At at a frequency in-
crement of 0,0005/At, Figure E.-2 displays the resulting adaptive power den-
sity spectra in logarithmic form. As time increases, corresponding spectral
levels are plotted at a higher level in the figure. After a hrief warmup period,
the principal spectral peak closely follows the instantaneous frequency of the
input time series., Because of the exponential smoothing applied to the input
data, the trend of the spectrum is a linear increase (on a logarithmic scale) as
the frequency rises to the frequency of the principal spectral peak and then a
sharp dropoif out to the folding frequency. Figure E-3 illustrates the ability
of the adaptive maximuin entropy spectrum to track the instantaneous frequency
of the chii'p waveform. In this figure, the frequency of the maximum spectral
intensity is plotted as a function of time. Except for a small number of points,
tiae resulting path is very close to linear. The time lag of the spectral peak
relative to the instantaneous frequency is about ten points, or only one tenth of

the time constant,
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